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Arnol'd Cl] has'suggested a method for investigating the stability of steady- 
state hydrodynamic flows that does not require the linearization of equations. 
His technique Is based on the possibility of constructing a functional in the 
instantaneous states of the hydrodynamic fields which is canserved by virtue 

motion and has a,glven steady-state flow 'as Its extremal 
If this extremum Is a true minimum or true maximum, the 

If we 
imagine the "l&e1 surfaces of the functional in the functional space In the 

The meaniq of this theorem Is geometrically clear. 

neighborhood of a resenting a given steady-state flow, then in the 
case of a maximum they will be lmbedded In one another by closed 
surfaces contracting to a point. If the steady-state flow Is disturbed at 
some Instant, the corresponding phase point will shift into the nearby level 
surface and will remain there throuahout the lntlre subseauent time of motion 
by virtue of the conservation of thi functional. A small~lnltlal deviation 
entails correspondingly small deviations throughout the entire subsequent 
time of motion. 

In cl], where the matter under consideration was that of the two-dlmen- 
slonal flow of an incompressible Ideal fluid, the existence of the required 
functional followed from two conservation laws: conservation of energy and 
conservation of vorticitv. In the case of three-dimensional motion. the 
situation becomes somewhkt more complicated. With a homogeneous ana incom- 
pressible fluid, we no longer have a local Invariant characteristic such as 
the curl of the velocity. -The sole parameter which Is conserved Is the vor- 
tlclty flux through any fluid area. In [2] Arnol'd constructs a generallza- 
tlon of the above method which Includes the latter case but involves consld- 
eratlon of very unwieldy lmpllclt expressions for surfaces in the functional 
space, these surfaces no longer being the level surfaces of certain func- 
tionals. 

The purpose of the present paper Is to show that there exists a class of 
flows for which such a difficulty does not arise, to wit - the adiabatic 
flows of an essentially nonhomogeneous fluid which, in addition, Is assumed 
compressible. 

It is possible to consider a nonhomogeneous and Incompressible fluid. Deal- 

ing with the seemingly more complicated case of a nonhomogeneous fluid actu- 

ally turns out to be more convenient due to the existence In this case of 

an Invariant characteristic, the so-called "potential vortlcity" 

Q = grads - rot v 

P 
where s Is the entropy, P the density, and 

for example, [ 33). If an Incompressible fluid 
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v the flow velocity (see, 

were being considered, It 
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would be possible instead to write B = grad p-rot v. Flows of this type 

are important, for example,_in the meteorological study of zonal streams 

directed along the parallels. 

1. Let us write the equations of motion. With a view toward meteorolo- 

gical application, we immediately introduce a coordinate system rotating 

uniformly with the angular velocity m . The Euler equations can then be 

written asdv 
-=-igradp-gradiq-2,xv, dt $-+pdivv = 0 

ds 0 dt= 7 S=C,lnpp-". (1.1) 

where V Is the velocity of relative motion, P the pressure, m the poten- 

tial energy of the external forces, e.g. of the weight field including the 

centrifugal forces of rotational transport motion, and 8 the entropy. By 

introducing the enthalpy w , we can rewrite the Euler equation as 

dV 

-YE== 
-ggradw+Tgrads-gradcp-22a,xv, w=c,T+$=c,T (1.2) 

As already mentioned, there exists in addition to entropy yet another 

conserved quantity,the potential vorticity 

Q = grad s q r, . 
P ’ 

g = o 
dt (F, = rot v + 2s) w 

where i is the absolute vorticity. 

We now investigate the stability of some steady-state flow V. , So , PO, 

Imposing on It two limitations. The first of these replaces the condition 

of monotony of the vorticlty assumed in the two-dimensional case [l and 21. 

Specifically, we assume that the level surfaces of SO do not anywhere come 

In contact with the level surfaces of R,,, 

grad so x grad Q. # 0 (~4 
Each flow line is thereby ~ambiguously defined by a pair of values (se, 

no 1. The second limitation is as follows: we assume that the hard surface 

is one of the surfaces of constant entropy. Both of these limitations were 

first introduced in 141 In connection with the stability of atmospheric Jet 

streams. 

2, The steady-state flow we are considering obeys the Bernoulli theorem 

s + 200 + cp = k(s,, LZ*) @.*I 

where k(so, n,) 1s some constant along the streamline. This formula has 

several corollaries. Let us take the gradient of both sides of this equation, 

~0 x rot v. + (v, - 0) v, + grad (w. + tp) = k, grad so + ka grad Q, 

or, recalling Euler equation (1.21, 

v. x (rot v. -+- 2~) -+ To gr,ad SO = It, grad SO + kn gonad 00 (2.2) 

Next, we multiply vectorially both sides of this equation by grads, and 

transform according to the double vector product formula 

- v. (grad so - Fo) + Lo (grad so .vO) = kn grad R, x grad so 
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The term grad so -v,, is equal to zero because so is constant along the 

streamltie. The Pifst term is - pohva . Thus, 

POVO = Q. kn grad so x grad CA0 (2.3) 
The meaning of this formula Is evident. The velo6lty is directed along 

the tangent to the level surface of the conserved quantities sO and fia . 
In addition, the area of the tube of flow is inversely proportional to 

fgrad so X grad a,f. By the law of mass conservation, the proportionality 
factor between povO and grad so X grad Go must be constant on the stream- 

line. 

Now let us multlply.both sides of (2.2) vectorlally by grad Cl, . In 

exactly the same way, transforming by the double vector product formula and 

applying Formula (2.3), we obtain 

@adppe*to = (To - A,). k$ (2.4) 
The quantity In the left side is constructed similarly to the potential 

vorticity, except that it is no instead of sO which Is conserved. 

3. Let u8 write out the functionals which are conserved by virtue of the 

laws of motion. The first of these 1s the energy Integral (see [51, p.24), 

The second follows from the conservation of 8 and Cl for the Individual 

particles, 

where Q, is an arbitrary function of two variables. We will show that this 

function can always be chosen such that the functional I = E + F has a 

given steady-state flow as its stationary point, i.e. that the first varia- 

tion of this functional becomes zero at that point. We vary this functional, 

considering &y, 68, bp as independent variations and expressing bT in 

terms of them through Formula 

BT = T8s 1 ct -I- p6p i fh 
We find that 81= 

SSS{ 
pv8v+ +?p+wdp+ pTik+ c&t+ (D6p + 

+ p [~,as+ iftn (F + grad yt sv - + ~~)I} dV 

Transforming the terms containing grad bs and rot bv by integrating 

by parts, we have 

!I\ @)n grad 6s. tdv = - \s\ (%n grad 8 + Cn,, grad S) . ~8sd~= 
Y ri 

=- 

BUS iI 
P Qm gradpQe6 + Q-is. ni BsdV 

sss @a grads.rot6vdV= - ’ @nngradsx gradQ.&dV 
BS 

This gives us 
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where 

81x= (pv- 
Sag 

@an grad s x grad St) bv dV 

In order for the variation to equal zero It is necessary that the coeffi- 

cients of the independent variations go to zero when v, s and P are re- 

placed by quantities referring to our steady-state flow. Taking into account 

(2.1),(2.3) a.nd (2.4), we obtain from thls the three equations 

&-@--@$*=0, at,+&--@cDfi,:Q=O, k+cD--@*-SZ=O 

of which only one, the third, is independent, while the first two are its 

direct corollaries. Specifically, the first may be obtained by different- 

iating the third with respect to R , and the second by differentiating it 

with respect to s . Thus, if as our QI we take a function satisfying 

Equation k+@-- cDn.Q=O (3.V 
then the functional I constructed for a given flow has a stationary value. 

Without giving its derivation, let us merely set down the expression for 

the second variation, 

+ $j- (as + $ BP)” - gfadT+6 ii? - +vxr,&bv8+F' Q (3.2) 

If this we;e to turn Out positive for some flow, that flow would be stable. 

The last term of the second variation apparently excludes such a possibility, 

as is the case In the paper of Arnol'd [2]. It is conceivable that the re- 

sulting expression.might throw some light on the mechnism involved in loss 

of 

of 

1. 

2. 

3. 

4. 

5. 

stability. 

The author Is grateful to V.I.Arnol'd, whose work suggested the subject 

the present paper. 
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