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Arnol'd [1] has\suggested a method for investigating the stabllity of steady-
state hydrodynamic flows that does not require the linearization of equations.
His technique is based on the possibllity of constructing a functional in the
instantaneous states of the hydrodynamic fields which is canserved by virtue
of the equations of motion and has a given steady-state flow :as its extremal
(stationary) point. If this extremum is a true minimum or true maximum, the
flow 1s stable. The meani of this theorem is geometrically clear. If we
imagine the "level surfaces of the functional in the functional space in the
neighborhood of a point representing a given steady-state flow, then in the
case of a maximum ?minimum they will be imbedded in one another by closed
surfaces contracting to a point. If the steady-state flow 1s disturbed at
some instant, the corresponding phase point will shift into the nearby level
surface and willl remain there throughout the intire subsequent time of motion
by virtue of the conservation of the functional. A small initilal deviation
entails correspondingly small deviations throughout the entire subsequent
time of motlon.

In [1), where the matter under conslderation was that of the two-dimen-
sional flow of an incompressible ideal fluld, the existence of the required
functional followed from two conservation laws: conservation of energy and
conservation of vorticity. In the case of three-dimensional motion, the
situation becomes somewhat more complicated. With a homogeneous and incom-
pressible fluid, we no longer have a local invarilant characteristie such as
the curl of the velocity. The sole parameter which is conserved 1s the vor-
ticity flux through any fluid area. In [2] Arnol'd constructs a generaliza-
tion of the above method which includes the latter case but involves consid-
eration of very unwieldy implicit expressions for surfaces in the functional
space, these surfaces no longer being the level surfaces of certain func-
tionals.

The purpose of the present paper is to show that there exists a class of
flows for which such a difficulty does not arise, to wit — the adiabatic
flows of an essentlally nonhomogeneous fluid which, in addition, 1is assumed
compressible.

It is possible to consider a nonhomogeneous and incompressible fluld. Deal-
ing with the seemingly more complicated case of a nonhomogeneous fluid actu-
ally turns out to be more convenient due to the existence in this case of
an invariant characteristic, the so-called "potentlal vorticity"

rad s . v
Q- grads-robv (0.1)

. P
where 8 1is the entropy, o the density, and v the flow velocity (see,

for example, [3]). If an incompressible fluld were being considered, 1t
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would be possible instead to write { = grad p-rot v. Flows of this type
are important, for example,_in the meteorological study of zonal streams
directed along the parallels.

l. Let us write the equations of motion. With a view toward meteoroclo-
glcal application, we immediately introduce a coordinate system rotating
uniformly with the angular velocity w . The Euler equations can then be
written as

dv 1 dp .
o= -—Fgradp-—gradq)——mev, —d—t-—}—pdlvv =0
ds
= =0 s=cyIlnpp> (1.1)
where v 1s the veloclty of relative motion, P the pressure, ¢ the poten-
tial energy of the external forces, e.g. of the weight field including the
centrifugal forces of rotational transport motion, and & the entropy. By

introducing the enthalpy w , we can rewrite the Euler equation as

%=.——gradw+Tgrads—gradcp—waV, wauT—l"i:“:cpT 1.2)

As already mentioned, there exists in addition to entropy yet another
conserved quantity,the potential vorticity

Q— ﬂps_'_@_ : ff% = (& = rot v + 2m) (1.3)

where g is the absoclute vorticity.

We now investigate the stability of some steady-state flow Vo , 8 , fo,
imposing on 1t two limitations. The first of these replaces the condition
of monotony of the vorticlty assumed in the two-dimensional case [1 and 2].
Specifically, we assume that the level surfaces of 8, do not anywhere come
in contact with the level surfaces of Q,,

grad s, x grad Q,==0 (1.4)

Each flow line is thereby unambiguocusly defined by a pair of values {8,,
Qo). The second limitation is as follows: we assume that the hard surface
is one of the surfaces of constant entropy. Both of these limitations were
first introduced in [4] in connection with the stabillty of atmospheric Jet
streams.

2. The steady-state flow we are considering obeys the Bernoulll theorem
Voz
""‘“z + u’g + (p = k (50, Qo) (2.1)

where #k(8y, N ) is some constant along the streamline. This formula has
several corollarles. Let us take the gradlent of both sides of this equation,

Vo X TOL Vo 4 (V- 7) Vo + grad (w, + @) = k, grad s, -+ ko grad Q,
or, recalling Euler equation {1.2),
vo % (rot vy + 2) + Tograd so = k,grad s, + kg grad Q, (2.2)

Next, we multiply vectorially both sides of this equation by grads, and
transform according to the double vector product formula

— v (grad so-8o) + Go (grad se-vo) = kq grad Q x grad s,



Nonlinear theory of hydrodynamic stabllity 1011

The term grad‘so-vb 18 equal to zero because 8, 1is constant along the
streamline, The first term 1s — pgfloV¥s . Thus,

pavo = g grad sy x grad O 2.3)
The meaning of thils formula is evident. The veloéity 1s directed along
the tangent to the level surface of the conserved quantitles 8, and o .
In addition, the area of the tube of flow 1s inversely proportional to
|grad s, X grad Q,|. By the law of mass conservation, the proportionality
factor between pgv, and grad s, X grad Q, must be constant on the stream-
line.

Now let us multiply. both sides of (2.2) vectorially by grad O, . In
exactly the same way, transforming by the double vector product formula and
applying Formula (2.3), we obtain

gl?.%?ii? = (To—k,)- f_n‘?.. (2.4)

The quantity in the left slde 1s constructed simllarly to the potential

vorticity, except that it 1s (s instead of 8, which 1is conserved.

3. Let us write out the functionals which are conserved by virtue of the
laws of motion. The first of these 1s the energy integral (see [5], p.2%),

2
4E _ , E:SSSp(L»-Q—cUT—l—(p)dV
dt 2
The second follows from the conservation of & and (Q for the individual
particles dF
’ =0, F={{{p0, @av

where ¢ 1is an arbitrary function of two variables. We wlll show that this
function can always be chosen such that the functional I = fF + F has a
given steady-state flow as its statlonary point, 1.e. that the first varla-
tion of this functional becomes zero at that point. We vary this functional,
considering ©&v, 88, 8p as independent variations and expressing 6T 1n
terms of them through Formula

8T = Tds/ ¢, + pdp | pPcy

81 = SSS {pv v+ —;— v28p + wdp + pTds + 9dp + Dép 4

4o [(Dsés-{— ®q (graiés.; + grad s;}rot v % 59)]} dv
Transforming the terms containing grad 8 and rot &6v by integrating

by parts, we have
1\ ®a grad 8s-1aV = — ({{ (Paagrad @ + Daugrads) - gosav =
= — (o [Pan E2E2E | @g,-0] 852y

We find that

SSS g grad s-rot dvdV = — SSS @qq grad s x grad Q- 8vdV

This gives us
81 = 81, + 81, + 81,



1012 L.A. Dikii

where

8= SSS (pv — @ grad s x grad Q) dvdV
8, = Sggp (T + ®,—®an - ﬂ%‘ﬁ—mm-g) 8sdV

2
013=S.S§(T+w+(p+m_-—sz.q>‘,)ﬁpdv

In order for the varlation to equal zero it 1s necessary that the coeffi-
clents of the independent variations go to zeroc when v, 8 and p are re-
placed by quantities referring to our steady-state flow. Taklng into account
(2.1),(2.3) and (2.4), we obtain from thls the three equations

ko /Q—Qga=0, ®,+k—Dn-Q=0, k+0®—0q-Q=0

of which only one, the third, is independent, while the first two are its
direct corollarles. Specifically, the first may be obtalned by different-

jating the third with respect to 0 , and the second by differentlating it
with respect to s . Thus, if as our ¢ we take a function satisfying

Equation k+®—Dg-Q=0 3.1)
then the functional I constructed for a glven flow has a stationary value.

Without giving its derivation, let us merely set down the expreassion for
the second varlation,
T —

o1 — (] [p00" + 2v v op + 5 o + 4 (T s — 00)' +

R d7. 2
+ -c-;%—(és + 2 o) — gl T8 o0 — Zyxlorotdvas|aV  (3.2)

If this were to turn out positive for some flow, that flow would be stable.
The last term of the second variation apparently excludes such a possibllity,
as is the case in the paper of Arnol'd [2]. It is conceivable that the re-
sulting expression might throw some light on the mechnism involved in loss
of stability.

The author is grateful to V.I.Arnol'd, whose work suggested the subJect
of the pregsent paper.
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